
Labtainers Student Guide

Fully provisioned cybersecurity labs

November 22, 2024

1 Introduction

This manual is intended for use by students performing lab exercises with Labtainers. Labtain-
ers provide a fully provisioned execution environment for performing cybersecurity laboratory
exercises, including network topologies that include several different interconnected computers.

Labtainers assume you have a Linux system, e.g., a virtual machine appliance described
below. If you are accessing a pre-defined Labtainers VM via a web browser, you can skip to
section 2.

1.1 Obtaining and installing Labtainers

Labtainers requires an x86-based platform. If your computer has ARM-based processors such
as Mac Mx-based Powerbooks, see https://github.com/CamilYed/Labtainer-ARM-mac. Al-
ternately, you can access and run Labtainers exercises on the cloud as described in section
5.

The easiest way to obtain Labtainers is to download one of the pre-configured virtual ma-
chines from https://nps.edu/web/c3o/virtual-machine-images, and import it into Virtu-
alBox, VMWare or Hyper V. Follow the brief instructions on that download page. When you
first boot the resulting VM, Labtainers will take a moment to update itself. You are then
provided a terminal that includes some hints, and can be used to run Labtainers. A video
tutorial on installing Labtainers is at https://nps.edu/web/c3o/labtainers-tutorials.

Note that the VM’s Ubuntu Linux distribution is configured to NOT automatically perform
system updates. It may prompt you to download and install updates. That is typically not
necessary and may tie up your network bandwidth.

You may now skip to section 2.

1.2 Alternatives to the Labtainers VM Appliance

Skip this section and go to section 2 if you are using a Labtainers VM appliance or accessing
Labtainers remotely via a browser.

Please note that Docker runs as a privileged service on your computer, and Labtainers
containers run as privileged containers. If you have sensitive data on your computer, you should
understand the isolation provided by Dockers on your system. An alternative is to use one of
our virtual machine appliances rather than running Docker directly on your computer.

1.2.1 Installing Labtainers on an existing Linux system

NOTE: This approach is discouraged unless you are experienced with Linux system con-
figuration debugging. The Labtainer framework is distributed as a tarball from: https:

//nps.edu/web/c3o/labtainers Click the link named: “Download the Labtainer framework”,
and untar the resulting file into a permanent directory on your Linux system, e.g., into $HOME.
For example, if you downloaded the file from a browser on your Linux system:

cd

tar -xf ~/Downloads/labtainer.tar

From the directory into which you untarred the tarball start the installer script:

cd labtainer

./install-labtainer.sh

1

https://nps.edu/web/c3o/virtual-machine-images
https://nps.edu/web/c3o/labtainers-tutorials
https://nps.edu/web/c3o/labtainers
https://nps.edu/web/c3o/labtainers

This script will install the latest version of Docker and packages required by the Labtainer
framework. It will cause your Linux host to reboot when it completes.

After the Linux host reboots, open a terminal to your Linux host and change directory to
wherever you untarred the tarball, e.g., your HOME directory.

1.2.2 Browser-based access to Labtainers

Labtainers can be run on servers, e.g., VMs on the a cloud service, and accessed via your
browser. See section 5 for information on using cloud services. Alternately your school might
have virtual desktop solution such as VMWare Horizons that can host the Labtainers VM
appliance.

2 Selecting a Lab

All labs are run from the same Labtainer workspace directory, which is typically at:

cd $LABTAINER_DIR/scripts/labtainer-student

The prepackaged virtual machines automatically start a terminal in this directory.
To see a list of available labs, run the labtainer command with no arguments:

labtainer

Use the -k option to see a list of searchable keywords, and the -f <keyword> option to view a
summary of labs having that keyword.

Lab exercises are also organized into Labpacks that are a collection multiple related labs
that you may wish to perform in sequence (e.g., based on direction from your instructor.) Use
the

labpack

to view a list of Lab Packs, and provide the name of a Labpack as an argument to see a list of
the labs within a Labpack. That command output also includes an indication ([Y] or [N])
of whether you’ve generated any results from each lab. Your instructor may provide you with
custom Labpacks in the form of a URL. You may add those to your system by using the

labpack -a <url>

Your instructor may direct you to add new or custom lab exercises to your installation by
providing you with a URL of an IModule. To get access to those labs, use:

imodule <url>

Additional lab exercises created by other instructors are available as IModules, whose URLs
are listed at https://nps.edu/web/c3o/imodules.

3 Performing a Lab

To run a specific lab, include the name of the lab in the labtainer command:

labtainer <labname>

2

https://nps.edu/web/c3o/imodules

where labname is the name of the lab to run. The first time any given lab is run, a set of files
are downloaded, and that progress is reported on the screen. The size of the downloads varies
between labs.

Most labs direct you to a PDF version of a lab manual, can be viewed by right clicking on
the displayed path, or you can open the file in a browser. Please note that some of the initial
lab instructions repeat the steps you’ve already taken, and you need not perform those again.

A list of Labtainer commands can be found in Appendix A of this document. A video tutorial
on performing Labtainer labs is at https://nps.edu/web/c3o/labtainers-tutorials.

Once you start the lab, you will typically see one or more virtual terminals connected to
computers within the lab. While running the lab, if you require more virtual terminals, use:

moreterm.py <labname> <container>

where container is the host name of the component on which to attach a terminal. It can be
omitted for labs having a single component. See Appendix B for information on customizing
terminal window colors and text.

The virtual terminals for most labs present bash shells via which you can interact with the
attached computer, (which is actually a Docker container designed to appear like a separate
computer). A single computer may have multiple virtual terminals attached to it. Each com-
puter is independent, and may use networks to interact with other Labtainer computers within
the lab.

Many labs automatically gather results of your work, which you will provide to your in-
structor. Note that, unless otherwise directed, exploration and experimentation you perform
either before or after performing the expected activity will not diminish or dilute your results.
And you typically do not have to take actions to collect or record your results. This occurs
automatically as noted in the next section.

3.1 Interrupting and Completing Labs

When you want to stop working for a while or are finished and ready to turn it in to your
instructor, type:

stoplab

from the Linux system from which you issued the labtainer command. All changes to the
files, etc. will be preserved and you will be able to resume the lab just the way you started it.
You can resume your work, as needed.

The stoplab command always displays the directory containing a file with a .lab extension
that should be provided to your instructor. It shows the current results of your work.

The easiest way to forward the complete .lab file to the instructor is to start a browser,
e.g., Firefox, on the VM from which you are running Labtainers. Then use the browser to either
email the file, or upload it into an LMS system, e.g., Sakai. Alternately, you can configure the
VM to use a shared folder, and use that to copy the .lab file to the host computer.

3.2 Redoing a Lab

Sometimes you might want to redo the lab from the beginning. In this case, type:

labtainer -r <labname>

This will delete any previous containers associated with this lab and start it fresh. Warning:
this will cause all previous data from the named lab to be lost.

3

https://nps.edu/web/c3o/labtainers-tutorials

3.3 Checking your work

Some labs include criteria by which to automatically assess your progress. Where enabled and
supported, this feature can be utilized by issuing the checkwork command from Linux system.
That command can be run while the lab is still running. If the lab has been stopped, you must
provide the lab name to the checkwork command, e.g.,

checkwork telnetlab

The meaning and value of the checkwork output varies by lab. The command output includes
a description of what is being measured, which in some cases may be quite mundane such as
the quantity of times you tried a particular command. Please note that the checkwork output
is not a “score” or a grade.

3.4 Submitting your work

When you’ve completed a lab and run the stoplab command, your results are stored in a file
with a .lab extension in the directory at:

$HOME/labtainer_xfer/<lab name>

That file should be provided to your instructor. There are several ways to transfer the file.

1. Use the browser on the VM to email the file to your instructor.

2. Use the browser on the VM to access your school’s LMS system such as Saki or Black-
board, and upload the file.

3. Configure the VM to enable drag and drop, then move the file to your host computer to
email or upload to an LMS.

4. Configure the VM and host to share folders and copy the .lab file to the shared folder
to email or upload to an LMS.

3.5 Getting Help and Things to Avoid

To get help, type:

labtainer -h

from the Linux system from which you issued the labtainer command. A list of useful labtainer
commands will be displayed. Also see our support page at nps.edu/web/c3o/support1

Do not run multiple labs simultaneously. Consistent results cannot be guaranteed when
more than one lab runs at the same time.

4 Other Considerations

4.1 Networking

In addition to network properties defined for the lab, each component /etc/host file includes
a my host entry that names the Linux host, e.g., the VM. This allows students to scp files
to/from the container and Linux host.

Most containers will include a default gateway route that leads to a virtual gateway on the
Linux host. This allows the student to reach external networks, e.g., to fetch additional packages

4

nps.edu/web/c3o/support1

in support of student exploration. Note however that in some labs, one or more components
may have a different default route for purposes of the lab. And these default routes preclude
reaching external networks, e.g., to add new packages with apt-get. This limitation can be
temporarily remedied by running this command on the computer:

/usr/bin/togglegw.sh host

This will change the default route to use the virtual gateway. When done, restore the original
default route with:

/usr/bin/togglegw.sh container

Note however that a few labs preclude connection to external networks, regardless of routing.
The intent is to keep things like Metasploit off your campus network.

Use of the togglegw.sh script is not necessary to reach the Linux host, (e.g., to scp files) if
the default route leads to a gateway having a default route leading to the virtual gateway. Try
the scp, and if it fails try using the togglegw.sh script.

4.2 Installing and Using Labtainers Behind a Web Proxy

If you are not behind a web proxy, ignore this section (most school environments are not behind
proxies). If you are behind a web proxy, Labtainer installation requires that you have configured
your Linux package management configuration to reflect the proxy, e.g., the /etc/atp/apt.conf
or /etc/dnf.conf files.

Additionally, you will need to configure your Docker service as described at: https://

docs.docker.com/engine/admin/systemd/#httphttps-proxy And set the HTTP PROXY
environment variable to your proxy, e.g.,

HTTP_PROXY=http://myproxy:3128

If you wish to use apt-get from within a container to add new software to a container, you must
first modify the container’s /etc/apt/apt.conf file to reflect your proxy.

4.3 Limitations

The Labtainer “computers” are individual Docker containers that are interconnected via virtual
networks. These containers each share the Linux kernel of your host. Thus, a change to the
kernel configuration on one computer, (e.g., enabling ASLR), will be visible on other containers,
as well as your host.

It is suggested that the student’s Linux host be a virtual machine that is not used for
purposes requiring trust. Software programs contained in cybersecurity lab exercises are not,
in general, trusted. And while Docker containers provide namespace isolation between the
containers and the Linux host, the containers run as privileged. Labtainers run as Docker
containers and use the Docker group which is root-equivalent. In other words, even though
you start a Docker container as a non-privileged user, software in the resulting container can
modify the Linux host, e.g., the VM.

The computers each include a .local/ directory beneath the HOME directory. This is
used by the Labtainer framework and includes results that get packaged up for forwarding to
the instructor. Do not modify any files beneath the .local directory. Otherwise, you can treat
those containers as Linux systems, and explore them.

Pasting multiple commands into a labtainer terminal may result in the not all of the com-
mands being executed.

5

https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy

4.3.1 Network Limitations

Labtainer containers do not include typical OS network configuration files such as /etc/network/interfaces
or /etc/netplan. Nor do the containers include networking daemons such as networkd. The
initial post-boot network interface configurations are managed by Docker as prescribed by the
labs design. Users may alter network configurations, e.g., via the ip command, and may con-
trol DNS naming by directly modifying the /etc/resolv.conf file. Persistent changes to the
resolv.conf DNS naming can be achieved using /etc/rc.local.

5 Cloud Labtainers

Labtainers can be run on cloud services and accessed via a browser. Cloud service providers may
offer free accounts for students or others looking to learn about their cloud services. Currently,
Labtainers works with the Google cloud platform as described below. Support for Azure has
been stopped due to problems with that platform.

5.1 Google Cloud Platform

These instructions assume you have a google cloud account. https://cloud.google.com/
This requires that the Google Cloud SDK be installed on the Mac, Windows or Linux:

https://cloud.google.com/sdk/docs/quickstart

On Linux/Mac, add the google-cloud-sdk/bin directory to your PATH environment
variable. For example, if you put the SDK in your home directory, then add this to your
$HOME/.bash profile

PATH=$PATH:$HOME/google-cloud-sdk/bin

and then run

source $HOME/.bash_profile

On Windows, just reopen a new PowerShell window after installing the SDK.
In the following command examples, use the ”ps1” file extension instead of ”sh” when using

PowerShell.

• Open a terminal on Mac/Linux, or a PowerShell window on Windows.

• Install the local scripts by getting this script (make it executable on Mac or Linux):
https://raw.githubusercontent.com/mfthomps/Labtainers/master/google/install_

labtainers.sh Or on Windows: https://raw.githubusercontent.com/mfthomps/Labtainers/
master/google/install_labtainers.ps1

On Mac or Linux:

– Get the install script:

curl -L https://raw.githubusercontent.com/mfthomps/Labtainers/master/\

google/install_labtainers.sh --output install_labtainers.sh

– chmod a+x install labtainers.sh

On Windows:

– Get the script:

6

https://cloud.google.com/
https://cloud.google.com/sdk/docs/quickstart
https://raw.githubusercontent.com/mfthomps/Labtainers/master/google/install_labtainers.sh
https://raw.githubusercontent.com/mfthomps/Labtainers/master/google/install_labtainers.sh
https://raw.githubusercontent.com/mfthomps/Labtainers/master/google/install_labtainers.ps1
https://raw.githubusercontent.com/mfthomps/Labtainers/master/google/install_labtainers.ps1

wget https://raw.githubusercontent.com/mfthomps/Labtainers/master/\

google/install_labtainers.ps1 -O install_labtainers.ps1

• Then run it (Mac/Linux).

./install_labtainers.sh

Windows:

./install_labtainers.ps1

That will create a $HOME/labtainers google directory.

• Change to the $HOME/labtainers google directory

cd $HOME/labtainers_google

• Log into your Google cloud account from the command line:

gcloud auth login

• Define your default region and zone by editing and running the set defaults.sh script.
And then initialize using:

gcloud init

• Once logged into the Google Cloud with default region/zone defined, run the create vm.sh
(or create vm.ps1 for windows) script, passing in a user ID. The ID can be any name
without special characters, e.g.,

./create_vm.sh myname

• On Linux/Mac, you will be prompted for an ssh passphase, leave it blank. On Windows,
ignore the warnings about ssh keys.

• The create vm script may take a while to run. The process is complete when you see
Labtainers is up. Point a local browser to http://localhost:6901 and perform the labs.
When prompted for a password in the browser, just click submit or OK, i.e., leave the
password blank. The password for the labtainer user in the VM is labtainer.

• When done with labs, run the get results.sh (or get results.ps1) script:

./get_results.sh <user ID>

This will store your Labtainer results in /labtainer xfer. Provide those results to your
instructor.

• If you become unable to reach the Labtainers via your browser, e.g., after shutting down
your computer, simple use the restart.sh script:

./restart.sh <user ID>

7

• The create vm.sh script will create an SSH key pair named id labtainers within your
/.ssh directory. The private key in id labtainers is not passphrase protected, so you must
protect it. You may move the keys to a different computer and access your Labtainers
from that computer’s browser. You must first run the install labtainers.sh script on that
computer, and then run the restart.sh script.

• If the terminal on the desktop goes away (e.g., a right-click will sometimes do that), create
a new terminal using this command:

./newterm.sh <user ID>

• When done with a lab, use

./stop_vm.sh <user ID>

to stop incurring processing charges. Note you may still incur storage charges until the
VM is delete.

• To restore a VM after you stopped it, use:

./start_vm.sh <user ID>

• When completely done with the VM, use the delete vm.sh script to stop incurring all
charges:

./delete_vm.sh <user ID>

• Shutting down the VM without deleting it will not stop all charges, but will stop pro-
cessing charges. See the Google Cloud dashboard and pricing for more information.

8

Appendices

Appendix A Labtainer Command Summary

The following labtainer commands are available from the labtainer-student directory. Most
of these commands include a -h option for help:

• labtainer <lab> -- Start the named lab. If no name is given, a list of available labs will
be displayed. Command completion is supported, e.g., typing labtainer tel followed
by the tab key will display all labs starting with tel.

• stoplab -- Stop the currently running lab.

• moreterm.py <lab> <container> -- create a new virtual terminal for the container.

• labpack – List the installed Labpacks, i.e., groups of related labs.

• imodule – Manage local IModule labs, e.g., labs distributed by your instructor.

• labtainer <lab> -r -- Delete any previous containers associated with this lab and
start it fresh. Warning: this will lose any previous data from the named lab.

• checkwork – Performs automated assessment for selected labs and provides you with
information about your progress. Note this is not a grade and is not a score. It simply
reflects a lab-dependent set of goals.

• quiz – Provides a quiz for selected labs to help prepare you to perform the lab.

• update-labtainer.sh – Update the Labtainer installation to include bug fixes and new
labs.

• check nets.py – Runs diagnostics to potentially resolve Docker related problems.

Appendix B Customizing terminals

Terminal colors and text size can be customized by right clicking on a terminal and selecting
Preferences. From there, select the Unnamed or Default profile and click its down-arrow and
select ”clone”. Give the new profile a name, and then select your new profile. Adjust the colors
and text appearance by selecting the tabs on the top of the window. Experiment by creating
a new terminal window, right-click and select your profile from the Profiles submenus.

If you want all of your terminals to look like a new profile, click the down arrow on your
new profile and make it the “default”.

If you create a terminal profile named labtainers, that profile will be used with Labtainers
lab terminals. This can be helpful to distinguish the Labtainers terminals from other terminals
on your desktop. A video tutorial on customizing terminals is at https://nps.edu/web/c3o/
labtainers-tutorials.

C

https://nps.edu/web/c3o/labtainers-tutorials
https://nps.edu/web/c3o/labtainers-tutorials

	Introduction
	Obtaining and installing Labtainers
	Alternatives to the Labtainers VM Appliance
	Installing Labtainers on an existing Linux system
	Browser-based access to Labtainers

	Selecting a Lab
	Performing a Lab
	Interrupting and Completing Labs
	Redoing a Lab
	Checking your work
	Submitting your work
	Getting Help and Things to Avoid

	Other Considerations
	Networking
	Installing and Using Labtainers Behind a Web Proxy
	Limitations
	Network Limitations

	Cloud Labtainers
	Google Cloud Platform

	Appendices
	Appendix Labtainer Command Summary
	Appendix Customizing terminals

