
Labtainer Framework Development Guide

Fully provisioned cybersecurity labs

December 11, 2022

This document was created by United States Government employees at The Center for
Cybersecurity and Cyber Operations (C3O) at the Naval Postgraduate School NPS. Please

note that within the United States, copyright protection is not available for any works created
by United States Government employees, pursuant to Title 17 United States Code Section

105. This document is in the public domain and is not subject to copyright.

Contents

1 Introduction 3
1.1 Linux host installation . 3

2 Development VM Installation 3
2.1 Developer Software Prerequisites . 3
2.2 Getting Labtainers from Github . 4
2.3 Setting up the Development Environment . 4
2.4 Docker Installation . 4

3 Framework implementation overview 5
3.1 Implementation elements . 5
3.2 Control flow . 6
3.3 mynotify . 6

4 Distribution publishing 6
4.1 VM Appliances . 6

4.1.1 Installation sizes . 7

5 Source control and Configuration Management 7
5.1 Build artifacts . 7

5.1.1 Build steps . 8
5.1.2 Base images . 8
5.1.3 Framework versions . 9

5.2 Releases and Container Images . 9
5.2.1 The premaster branch . 9

5.3 Development branches . 10
5.4 Test registries . 10
5.5 Testing . 10
5.6 Merging . 11
5.7 Publish new release . 12
5.8 Continuous integration with Jenkins . 12

5.8.1 Jenkins installation . 12

6 Developer guidelines 12
6.1 Testing and Running Existing Labs . 12

7 GNS3 Support 13

8 Dev Ops notes 13
8.1 Test VMs . 13

9 Capturing stdin/stdout 13

10 Headless Labtainers 19
10.1 Gnome terminal issues . 19

11 Notes 19
11.1 Race condition on precheck.sh output . 19
11.2 temporal logic considerations . 19
11.3 parameterizing the start.config . 19

1

11.4 Packaging . 20
11.5 Todo . 20

11.5.1 Docker problems . 20
11.5.2 Lab fixes . 20
11.5.3 Grader updates . 20
11.5.4 UI fixes . 20

11.6 ongoing . 21
11.7 UI . 21
11.8 UI Development . 22

11.8.1 Warn of changes . 22
11.8.2 Distribution . 22

11.9 Mounts for software persistance . 22
11.10Build dependence . 22

11.10.1 IModules . 22
11.10.2 Base images IDs . 22

11.11Other bread crumbs . 23
11.12tap/netmon Boot synchronization . 23
11.13IModule testing at NPS . 23
11.14Gradelab via browser . 23
11.15Lab versions . 23

2

1 Introduction

This document is intended for use by developers who maintain the Labtainer framework. It is
also applicable to lab designers who wish to follow Labtainers configuration management and
testing conventions for their labs. It does not address the mechanics of lab creation, which are
covered in the Labtainers Lab Designer User Guide.

Note: The Labtainer framework is developed within and for Linux environments using the
command line.

The procedures described herein assume development occurs on a Linux VM that itself is
hosted on a Linux platform using VirtualBox. That underlying Linux platform also hosts test
VMs that will run regression tests. Other configurations are certainly possible, but they would
require the developer to potentially alter procedures and/or scripts.

The VirtualBox product is used to to run Labtainer VMs for testing. Currently, tests are
performed on Ubuntu16 and Ubuntu18 VMs, the former tests backwards compatibility of the
frameworks python3 support.

1.1 Linux host installation

The host platform should include VirtualBox (to host the Development VM and test VMs),
and Docker, (to host a set of test registries). The host platform should have a directory named
SEED that will be shared by each of the VMs. If the host is to publish distributions to the
NPS website, then it should have an ability to transfer files to

davs://nps.edu/webdav/c3o-staging/document_library/labtainers

2 Development VM Installation

This section describes installation of software on the development VM, which should have at
least 150 GB of disk.

2.1 Developer Software Prerequisites

Labtainers is primarily implemented using python3. The containers within a lab include
python2 scripts that are part of the framework, e.g., functions that collect student artifacts.
The following packages are required on a Linux distribution to support Labtainer framework
development. The packages can be installed using the setup scripts/dev-pkg.sh script.

• git

• make

• g++

• Latex (texlive-latex-base and texlive-latex-extra)

• Docker (Community Edition) [See Docker Installation Section 2.4]

• pip3 apt-get install python3-pip

• dateutil pip3 install py-dateutil

• xdotool

3

2.2 Getting Labtainers from Github

In a Linux terminal, change the working directory into the directory you want to store Lab-
tainers.

Run this in the terminal:

git clone https://github.com/mfthomps/Labtainers.git

2.3 Setting up the Development Environment

• Disable any auto-updates on your machine as this may interfere with ’apt-get’ requests
you may have during development.

• Modify your /.bashrc file.

1. Add LABTAINER DIR as an environment variable and set its value as the path
to the /Labtainers directory.

2. Modify the $PATH to include ./bin and $LABTAINER DIR/scripts/designer/bin.

3. In summary, your /.bashrc should include something like this:

export LABTAINER_DIR=$HOME/Labtainers
export TEST_REGISTRY="YES"
if [[":$PATH:" != *":./bin:"*]]; then

export PATH="${PATH}:./bin:$LABTAINER_DIR/scripts/designer/bin"
fi

• cd into $LABTAINER DIR/setup scripts:

– Run build-docs.sh to build the lab manuals for all labs.

• cd into $LABTAINER DIR/tool-src/capinout and run ./mkit.sh

• Add the vbox share group using setup scripts/vbox-share.sh

• Map the SEED directory on the Linux host as a shared folder. This directory is used
to share distribution files between the development system and the test VMs. Accept
defaults so its name is

/media/sf_SEED

2.4 Docker Installation

For full and convenient installation of Docker and setting of Docker privileges, run ’install-
docker-ubuntu.sh’ in ’setup scripts’, assuming you are developing in Ubuntu. Note: Make
sure to run the script as user (not sudo), so that your user can be added to the Docker group.

• If on a different Linux distribution look in the same folder for your corresponding distri-
bution (CentOS, Debian, Fedora).

• If your Linux distribution is none of these, please view Docker’s webpage documentation
to learn how to install Docker and set Docker privileges on your machine.

4

• NOTE: These install-docker scripts include the installation of other packages outside
Docker that are necessary for building labs.

Reboot the system, so that user receives Docker privileges.
Run pull-all.py to get all base docker images.

3 Framework implementation overview

3.1 Implementation elements

The Labtainer framework implementation is primarily python scripts. A number of the top
level scripts share functions found in scripts/labtainer-student/bin/labutils.py. The top level
scripts are organized as follows:

• Student

– labtainer (start) and stoplab – In the labtainers-student/bin directory, these
run on the Linux host and manage the pulling, starting and stopping of containers.
They also coordinate collection of student artifacts.

– Container scripts – In the labtainers-student/lab bin directory, these execute on
containers, e.g., to hook bash and parameterize containers.

• Instructor

– gradelab and stopgrader– Push student artifacts onto grader container and get
assessment results.

– Container scripts – perform grading functions.

– Web interface – The -w option to gradelab starts a Flask web server on the container,
found in the flask/server.py. When debugging and enhancing this, use the
-v option instead of the -w option to cause the development flask directory to be
mounted by the container. Then start the server with .local/flask/server.py
labname.

• Lab designer

– Building – rebuild in labtainers-student/bin

– Publishing labs – labtainers/distrib/publish.py

– Base Labtainer images – scripts/designer/bin, create and publish the base images.

• Other

– VM appliances – //host scripts, update and publish VM appliances as OVA files for
VirtualBox and VMWare.

– Regression testing of grading functions is performed by labtainer-instructor/regress.py.
Expected results are stored in the labtainer/testsets directory.

– Regression testing of labs and grading combined: scripts in testsets/bin; data sets
are not distributed, they are in labtainer/simlab/<labname> Get simlab data
sets using

git clone https://gitlab.nps.edu/mfthomps/Labtainers-simlab.git/

5

3.2 Control flow

Student scripts, e.g., labtainer, run from the scripts/labtainer-student directory. That
directory also contains the bin/labutils.py, which contains most of the framework functions.

The first time a given lab is run, the docker create function is used to create containers.
The docker start function is then used to start the container, and is used for subsequent
starts of the same lab.

When a student container is first started ”docker exec” is used to run parameterize.sh on
the container.

That script also invokes hookBash.sh, which adds the bash sdtin/stout capturing hook, and
adds the startup.sh call into the .profile.

The startup.sh uses a lock to control which terminal displays the instructions. In prac-
tice most instructions are now pdf files. The startup.sh invoked by student will source a
student startup.sh if present.

The Student.py script runs when a lab is stopped to collect artifacts and kill lingering
monitored processes.

Grading is performed on a separate container built for each lab, derived from the lab-
tainer.grader image.

The checkwork function forces a collection of artifacts, and a grader container is then run
to perform grading.

3.3 mynotify

The mynotify runs as a service. It is installed from the labtainer-student/lab bin directory. It
will exit silently if the lab has no notify file in .local/bin. See its log on each container within
/tmp/mynotify.log The service uses the Linux inotify service to detect and record access to
files.

4 Distribution publishing

The Labtainer framework is distributed via the c3o website as a tar file, or, optionally a VM
applicance (both VMWare and VirtualBox). The Docker images are distributed via the Docker
Hub.

The labtainer/distrib/mkdist.sh script runs on a Linux VM hosted on windows or Linux,
and creates the distribution tar and copies it into a shared folder. The mk-devel.sh script makes
the developers version of the tar. From that shared folder, the two tar files are copied to the

\\my.nps.edu@SSL\DavWWWRoot\webdav\c30-staging\document_library"

and then ”Publish to Live” is performed on the Liferay site.
The distributions are created from a git repos, as described in section 5.

4.1 VM Appliances

Two prepackaged VM appliances are maintained: one for VirtualBox, and one for VMWare.
Each include their respective guest additions. The VMs are maintained on a native Linux
system using command line utilities, e.g., VBoxManage. The VMs are rigged to update Lab-
tainers, including a pull of baseline images, on each boot until the first lab is commenced.
Scripts named ”export*” are used to created the appliance files. The scripts re-import into test
images, which must be manually tested. The WinSCP script pushes new applicance images to

6

the CyberCIEGE download directory on the C3O web server. (Wine and WinSCP must be
installed on the Linux host that manages the VMs.

The VM appliances should be updated or recreated whenever changes are made to Labtairer
base images, otherwise, they are not expected to be changed. To revise the VM appliances,
use the scripts from host scripts on on the Linux system that hosts VirtualBox and VMWare
to update the VM appliances so they contain the latest baseline images. After the VM starts
and updates the baseline images, use:

sudo dd if=/dev/zero of=/emptyfile bs=1M
sudo rm -fr /emptyfile

to zero unused space and then run

./poweroffVB.sh

./compact.sh

to compact the VM image. Then export it:

./exportVB.sh

This will create the appliance OVA image, and will create a test VM from that appliance. The
test VM will start. Use that to run ad-hoc tests.

Do the same for vmware.
Then push the images to the web server, in our case this is the nps.box.com account pointed

to by the Labtainers web server.
The appliances automatically update the baselines and the Labtainer scripts on boot, so

there is only really advantage to doing this for baseline changes, since they take a while to
download.

4.1.1 Installation sizes

An initial install, including the base images, requires about 4GB. Installing a larger lab, e.g.,
snort, requires an additional 1GB. Running bufoverflow added 22M.

5 Source control and Configuration Management

This section describes Labtainers source control and mechanisms to support continuous integra-
tion. Labtainers is managed using git, Docker registries, and a set of custom scripts that control
rebuilding and publishing of artifacts. Artifacts are published to test environments associated
with each development branch of the product. Publishing releases for public distribution occurs
after development branches are tested and merged into the master git branch.

5.1 Build artifacts

Labtainers development creates the following artifacts:

• The distribution tar file for students, available as an artifact on GitHub

• A distribution tar file for lab designers. This is simply the master tar file from GitHub.

• A zip file of all the lab manuals, available as an artifact on GitHub.

• A JAR file for the labedit UI, available as an artifact on GitHub.

7

• A test script tar distribution containing SimLab scripts. (These come from a separately
managed repo.)

• The Docker container images for each lab.

• The Docker container image for the grader.

The tar distributions are created using scripts from the distrib directory. The Docker
images are built and published to a Docker registry using the publish.py script, which includes
file dependency logic to only rebuild images when one of their sources change. By default, the
publish.py script pushes to a local registry rather than to the DockerHub. Updated images are
pushed to the DockerHub as part of publishing a new revision of Labtainers.

Currently, there is no attempt to archive Docker image artifacts, i.e., only the latest versions
are available on publishing sites. Code artifacts are managed within GitHub.

5.1.1 Build steps

The following steps must be performed for each build to ensure testing is based on the latest
file versions. These steps are implemented with in the full build.sh script.

1. Pull the latest git version of the current branch with git pull

2. Refresh branch registry from the premaster (unless building premaster) using refresh branch.py

3. Rebuild and publish Labtainer base images using scripts/labdesigner/bin/mkbases.py

4. Rebuild and publish labs using publish.py

5. Create distribution tar files with mkall.sh

6. Run smoke test on Ubuntu16 and Ubuntu18 machines using scripts in testsets/bin

5.1.2 Base images

Changes to base docker images referenced by the lab containers will trigger rebuilds. Base
docker images are extended by creating new dockerfiles with “.xtra” file extensions. This
lets us add features to a base without rebuilding all previous labs that use that base. While
these “.xtra” images are built with docker files managed within the designer/base dockerfiles
directory they are not true base images. Only the true base images are included in the initial
distribution. In general, avoid changes to a base docker image because doing so could lead
some installations to include two copies of the base image, which are very much larger than
most other Labtainer images. Modifications to an xtra extension image will not affect existing
installations that have run some labs. Whenever a new lab is started, if it relies on a newer
version of the xtra extension, that will be pulled as needed for the lab container images.

When a lab container image is created, it is labeled with the base image name and its image
ID (a checksum generated by Docker). This label is generated by a dockerfile that provides
labeling veneer on top of newly created images (see the relabel function of the publish.py
script.

When a lab is started, the framework confirms it contains the appropriate base image. If
not, the user is prompted to download it.

8

5.1.3 Framework versions

The “framework version” is a mechanism for providing compatability between new labs and
the framework. This value is indpendent of release identifiers. As a Labtainers lab evolves,
it may require additional support from the framework. If a new lab image requires an up-
dated Labtainers framework, then the ”framework version” must be incremented within the
bin/labutils.py script before the image is built and published. This will prompt users to run
update-labtainer.sh prior to running any newer lab image. Also insure that these lines are
present in the container dockerfile:

ARG version
LABEL version=$version

And, be sure to publish the revised framework before publishing the revised lab(s).

5.2 Releases and Container Images

A Labtainers release contains the set of artifacts described above. File versions within the
tar files of a release are all pulled from the git master git branch on the development system.
Docker container images within a release are built from a premaster git branch as described
below, and then pushed to DockerHub via the refresh mirror.py script.

New releases are created as follows:

• The premaster branch is tested using full build.sh to ensure container images reflect
the latest code, and Jenkins builds which ensure the premaster in github runs all regression
tests.

• Merge premaster into master. Do this manually (ignore automated scripts in distrib
directory), and fix any merge conflicts. git merge –no-ff premaster

• Use refresh mirror.py to push premaster registry images to Docker Hub.

• Determine the next git tag to use for the version ID, and pass that to justrelease.sh
(be sure to first activate an ssh agent and get the github personal access token.

5.2.1 The premaster branch

Labtainers source control management includes a premaster branch which shall always be on
the workflow of creating new releases. All merges on the path to a release go through the
premaster branch. No changes are made to the master branch. The only way the master
branch ever is updated is via a merge with the premaster branch, after all of its testing is
complete. This approach has two goals: 1) ensure that results of merge conflict resolution are
tested prior to inclusion within the master, and allow us to test container images before they
are published in a new version.

Container images on DockerHub are pushed from a registry containing images build from
the premaster branch. The push occurs during the final merge from the premaster branch into
the master branch during a release step. The images within the premaster registry are updated
only through a rebuild, i.e., full build.sh. Images are not not pushed from development
registries directly to the premaster registry.

It is intended that no changes be made directly to the premaster branch, rather, changes are
merged into the premaster from other development branches. Once a merge into the premaster
commences, no hotfixes affecting build images should occur until the merge completes and the
premaster is merged into the master.

9

5.3 Development branches

Development of new features and fixes occur within development branches. New branches are
made off of the premaster branch, but not during a premaster merge.

Remove local branches with:

git branch -d <branch>

Or use the -D option to force deletion. But, that not needed if the branch was properly merged.
Remove remote branches with

git push origin --delete <branch>

5.4 Test registries

The test registries are used to test the premaster and development branches of Labtainers.
Test registries are named by their port numbers (currently, all test registries must reside on

the same host). These port numbers are mapped to git branch names. This mapping occurs in
the config/registry.config file. The rebuild.py command pulls from the registry associated with
the current branch.

All development systems are intended to have the TEST REGISTRY environment variable
set to YES so that images are pulled and pushed to the appropriate test registry, which is
determined based on the current git branch. Test systems will have a REGISTRY BRANCH
environment variable that explicitly identifies the branch for mapping to a regisitry using the
registry.config file.

Within the test systems and the development host , i.e., the computer that builds distribu-
tions and docker images, update the /etc/docker/daemon.json file to reflect new registries as
”insecure”.

"insecure-registries": [
"testregistry:5000",
"testregistry:5001",
"testregistry:5002",
"testregistry:5003"
"testregistry:5004"

]

On the Linux system that hosts the development VMs, create the test registries using host scripts/start reg.sh.

5.5 Testing

Regression testing occurs within testing VMs that are provisioned from the Labtainer VBox
appliance as follows:

• clone (as linked) a smoketest box

• remove /.doupdate

• echo ”frank@beans.com” > /.local/share/labtainers/email.txt

• add $HOME/labtainer/trunk/testsets/bin to path in bashrc

• visudo and change sudo etnry to: ALL=(ALL) NOPASSWD:ALL

• apt-get install xdotool

10

• apt-get install vim

• setup scripts/prep-testregistry.sh

• touch /labtainer/.dosmoke

• run the setup scripts/smoke-profile-add.sh

• Add the vbox share group using setup scripts/vbox-share.sh

• Map the SEED directory on the Linux host as a shared folder. Accept defaults so its
name is

/media/sf_SEED

• Edit the /etc/hosts and /etc/hostname to define a distinctive hostname, e.g., ubuntu16smoke.

• Create a directory at SEED/test vms/<hostname>.

• On the development VM, create a script in testsets/binmodeled after test-ubuntu18.sh

• Modify the setup scripts/full build.sh script to invoke the new test script.

The setup scripts/smoketest.py scripts represents the test procedures for Labtainers. It is
expected that local repo development branches will be tested prior to pushing them to GitHub.
Similarly, the results of premaster branch merges are expected to be tested locally before it is
pushed to GitHub. A test run from a fresh pull from GitHub premaster branch is a prerequisite
to publishing a new release.

Local bench testing, e.g., using rebuild for a small set of labs, depends on the git
workspace and the test registry for the current branch. Local branch testing, i.e., use of
full build.sh, uses the local repo. It is up to the developer to ensure that is up to date.

Integration testing pulls from the GitHub repo for the desired branch.

5.6 Merging

Development branches are merged into the premaster branch as part of creating a new release.

• Be sure that any and all new and changed files are commited in the development branch,
and these have been tested.

• Refresh the premaster registry to ensure it matches the DockerHub images: ./refresh mirror.py
-r

• git checkout premaster

• git merge <dev branch>

• Fix any confilicts

• Rebuild images using the premaster branch source: ./full rebuild.py

• Run smoketest.

• Push premaster to GitHub:

git push --set-upstream origin premaster

Revert to premaster in case of merge issues or other failures using revert premaster.sh.

11

5.7 Publish new release

The steps for merging premaster into master and creating a new distrubtion are captured in the
distrib/mergePre.sh script. Labtainer releases are managed as GitHub releases, using
git tags and the github release tool.

git tag <new>
git push
git push --tags

Use the mkrelease.sh script to create the release files within GitHub.

5.8 Continuous integration with Jenkins

A Jenkins pipeline automates periodic testing of premaster branch of Labtainers. The
pipeline script is backed up in tesetsets/bin/jenkins pipeline.txt. The pipeline
pulls from the premaster branch of the GitHub repo. It builds any changed lab images (**TBD
flag those to remind to merge the premaster registry into the master). It then generates the
student and designer distributions and uses those to run the smoketest VMs.

5.8.1 Jenkins installation

The stock Jenkins is installed on the development VM. After installing Jenkins, add the jenkins
user to the vboxfs and the docker groups

sudo usermod -a -G vboxsf jenkins
sudo usermod -a -G docker jenkins

Jenkins workspace is at /var/lib/jenkins/workspace/labtainer-build/Labtainers Check logs
to make sure Jenkins git repo is not falling behind.

Manually go to the Jenkins labtainer-build directory and clone the Labtainer-simlab repo

git clone https://<token name>:<token>@gitlab.nps.edu/mfthomps/Labtainers-simlab.git

6 Developer guidelines

6.1 Testing and Running Existing Labs

When running labs, the goal is to force ourselves to run the distributed labs unless we have
specific reasons to do otherwise. Labtainers will use locally-created container images if they
are present – and these may be stale.

A) To ensure that you are running the latest version of the published lab (or version
assocated with your current git branch), first delete the current version of the lab using
setup scripts/removelab.sh.

B) If you find the lab to be broken, e.g., missing a file, please attempt to run ”rebuild.py”
on the lab. rebuild.py will ouput a log of issues. Report these findings to the lab author.

C) Always run removelab.sh after you have run an existing lab via rebuild.py.

D) Please review the lab’s manual very closely. This is so that both the lab itself and the
lab’s manual can receive feedback for improvement.

12

7 GNS3 Support

Please refer to the guide in docs/gns3 for information on integrating Labtainers with GNS3.

8 Dev Ops notes

The Jenkins utility and test VMs all run on the Ubuntu18-150 VM (the “development VM”),
which runs on the mike-Precision-Tower-7910 workstation, which is an Ubuntu 16
distribution. The VM can be remotely started using the /startBigVM.sh script (TBD
make service). The vbox-test-server service on the workstation will start smoketest VMs
in response to scripts run on the development VM, e.g., started by Jenkins.

Jenkins is configured to rebuild from GitHub every night.
A cron job is configured to rebuild using the local repo each night. An ssh tunnel to the

workstation is created to access Jenkins web interface.
Use vboxmanage list runningvms to confirm the development VM is running. Smoketest

logs appear in a shared folder at /SEED/smokelogs.

8.1 Test VMs

The host directory at SEED/test vms/<vmname> is used to communicate with test VMs.
The CURRENT BRANCH environment variable is set to determine which test repo will be used
as found in the config/registry.config file.

9 Capturing stdin/stdout

The user’s .bashrc sources two scripts to set up and manage functions that run prior to the
execution of the target command. If the target command is to be monitored (e.g., is not a
system command), then stdin and stdout are mirrored to timestamped files in the .local/result
directory. This mirroring is performed by the capinout program whose source is in the
tool-src/capinout directory. The capinout program is designed to handle use of pipes
and redirection within the command. The capinout process (or one if its children) will
fork/exec the wrap exec.sh shell, which sets signal handling and uses eval to run the target
command. Commands that simply use stdin and stdout without pipes are managed using a
pty that allows the command to control the terminal, e.g., to mask passwords or provide curses
controls. This requires a number of processes, as follows:

• The first process, called the stage, simply waits for its child to exit, or for its child to
report that the command process has orphaned a child, in which case the stage will exit,
freeing up the terminal while the orphan continues to run and potentially send output to
stdout and the timestamped mirrored file.

• The stage process forks a child called capinout that creates the master pty and performs
the mirroring.

• The capinout process creates a reaper process that becomes the session leader and con-
troller of the pty terminal.

• The reaper then forks the command process which execs the wrap-exec.sh script. Any
orphans of the command process are reparented to the reaper, and if the reaper detects
the command process exiting and leaving orphans, it signals the capinout process which
in turn signals the stage so that the stage can exit.

13

Data flow for the capinout program

The following diagrams illustrate data flow within the
capinout program resulting from the use of pipes on the
command line. The diagrams illustrate flow for an
example “t.py” target program. The capinout program
redefines stdin and stdout of the target program to be two
pipes: fds_in and fds_out. The capinout uses 4 other
pipes. Data read from the fdm_in and fdm_out pipes is
mirrored to timestamped files. The master_stdin and
master_stdout pipes are stdin and stdout of the capinout
program itself.

The final diagram illustrates the process structure and
data flow when no pipes are present in the command line.

14

echo hi | t.py

capinout

fdm_in fdm_out

stdout

pipe_left

master_std_outmaster_std_in

fds_in fds_out

Pipe on the left of the target

15

 t.py | less

capinout

fdm_in fdm_out

stdin

master_std_outmaster_std_in

fds_in fds_out
pipe_right

Pipe on the right of the target

16

echo hi | t.py | less

capinout

fdm_in fdm_out

pipe_left

master_std_outmaster_std_in

fds_in fds_out

pipe_right

Pipes on the left and on the right of the target

17

bash

Mirror output

master_stdin

Mirror input

stage capinout
fork

fdm_out
fdm_in

PTY MASTER

master_stdout

reaper

fds_out
 fds_in

PTY SLAVE

fork Fork/
exec

command

stdinstdout

Command line without pipes

capinout program

preexec.sh

pre-capinout.sh

18

10 Headless Labtainers

See README files in the headless-lite; azure; and google directories for information about
flavors of headless Labtainers (that run on cloud servers or other platforms lacking standard
X11 desktops.

10.1 Gnome terminal issues

If gnome termainals are created prior to completion of container initialization, the gnome
terminal may start and then exit. This might occur when the initial Labtainers terminal is
created on the labtainers container in a headless environment. It may also occur when starting
a lab (but why then would it also kill the original Labtainers terminal?).

11 Notes

11.1 Race condition on precheck.sh output

If an mynotify.py event causes an output to a timestamped file named precheck, that may
conflict with concurrent output from precheck.py resulting from some program/script running.
In theory, the program/script should complete its run of precheck before the program/script
actually gets to access the file that triggers a mynotify watch. So, the latter’s output to the
timestamped file is appended. Further, the mynotify.py looks for an existing timestamped file,
and if not found, looks for one from the previous second. This hack is an attempt to keep
the outputs merged. It will fail if the access does not happen within a second of the program
start. Consider the acl lab. We wish to know that alice has run the fun program, and that
opened the accounting.txt file. The precheck.sh script runs prior to the fun program, and
generates a timestamped file. The fun program opens the accounting.txt file, which triggers
mynotify to create a timestamped file named precheck. When mynotify is triggered to find a
timestamped output file, it looks for one of the current timestamp, and will also look for one
from the previous second. Thus, if the fun program takes more than 1 second before opening
accounting.txt, the assessment will report a false negative because the boolean conditions will
exist in different timestamp buckets.

An alternate implementation might be to somehow bind the initial precheck output to the
specific instantiation of the fun program, and then compare that to what triggered mynotify.
However: 1) precheck completes before the target program (fun) is started, and 2) inotify has
absolutely no sequencing guarantees, e.g., the fun program may terminate before the inotify
callback occurs.

11.2 temporal logic considerations

When evaluating results from logfiles containing timestamps use FILE TS or FILE TS REGEX
to ensure you get timestamped values for only matching records. Reliance on goals.config to
matchany can result in timestamped results that don’t corrolate to the desired record.

11.3 parameterizing the start.config

A copy of the parameterized version of start.config is placed into labtainer-student/.tmp/¡lab¿/.
This ensures that subsequent runs of the lab always have the same psuedo random values.

19

11.4 Packaging

The framework has not yet been adapted to use Linux package managers. Currently, scripts
are run from a workspace directory and python paths are managed relatively between scripts.

11.5 Todo

Change smoke test to look for email in expected results and set that as the email before starting
a lab. Validation should catch results.config naming of non-existent container.

The backups2 lab creates a loopback volume named myfs.img. The lab does not dismount
it. This device will go away on a reboot.

Add latex template and makefile when new lab setup is run.
Collect bash history from all users.
Clean up the webtrack lab manual to clarify steps, and to clarify no login to the labadserver

site is necessary.

11.5.1 Docker problems

The check nets.py tests for problems that sometimes crop up in Docker. These include Linux
routes defined on the host for container networks that no longer exist. And, loopback devices
that are not properly deleted? The file-deletion lab fails in a full smoketest, perhaps due to
a lingering loopback device? Lab must be completed prior to reboot of the host VM. Reflect
that in Lab Manual.

The backups2 lab consumed a loopback device, leaving it define (as seen when running
check nets.sh). This led the file-deletion lab to fail, being unable to get a loopback device.
Altered file-deletion to create the ”next” loopback device if it does not exist.

Metasploit lab now crashes the VM. g array unref: assertion ’array’ failed. Leads to X server
crash, loss of desktop. Perhaps only occurs after reboot, once, then works ok? Created both
containers with NO PRIVILEGE attribute in start.config, seems to fix it? NO: that breaks it
by keeping services from running. Disabled postgresql service in attacker seems to keep the
crash from happening? Also happened in a hackazon container derived from a dockerfile that
included multiple CMD entries (one in the latest file, one in the parent file).

Sometimes (only see on testing), the container ID reverts from the labtainer name to its
hash. This can be accompanied by an inability to manually stop the container. Seems to be a
Docker bug, but only appears every 6 months or so of daily regression testing.

11.5.2 Lab fixes

These fixes were deferred to avoid unnecessary rebuilds. The problems are due to files missed
from git, or directories that are not created.

ssl – to fixlocal on ca: mkdir /ca/private mkdir /ca/certs mkdir /ca/intermediate/private
mkdir /ca/intermediate/certs

11.5.3 Grader updates

Automate detection of need to update a local grader image, e.g., in response to a fix to the
grader.

11.5.4 UI fixes

• Resize windows and potentially alter font size.

20

• default buttons, e.g., so enter key makes default selection.

• right click menu for copy/paste in text fields.

• visual clue that lab needs saving.

• keyboard shortcuts

• UI for makepack

• Visual clue that results/goals window is open, color button?

• expand UI text area todo to flag goals/results without documentation

11.6 ongoing

Updated framework and grader to use python3. Intent is to not affect existing labs. Need
to publish centos-log2 and backups2 due to changes in centos packages. Changed grader and
centos.xtra base dockerfiles. Publish along with new update? Will centos-log2 run with old
framework? This is begin done in the python3 branch of git.

Python3 changed semantics of randint. Also changed random.seed to take a version number
for compatable seeding. Except version 3.5.2 is broken in that a string given as the seed causes
a non-deterministic (time?) seed to be used. This bug is fixed in 3.6. Our grader container
naturally installs 3.5.2, so we also install 3.6 from dead.snakes ppa and change the links in
/usr/bin/python3. The broken 3.5.2 version is also what comes with the Ubuntu used in the
original Labtainer VMs. So, we will maintain support for python2 in the framework, and fall
back to python2 if we detect 3.5.2.

Some html, e.g., for the softplc, want to visit fonts.googleapis.com. If no gateway/dns is
available, there is a long timeout. add ADD-HOST fonts.googleapis.com:127.0.0.1 to start.config
to shut it up.

In the VM .profile, move the terminal creation functions to a seperate script run in back-
ground – seems .profile must finish or VMWare Horizen borks the Terminal Server startup.

Smoketests still sometimes fail with bad routing tables and/or iptables. Run check nets.py
to test.

Use of Docker cache leads to build dependency errors in which a source file changes but
has not actual effect on the image. If the image checksum matches the cache, the date is not
altered, and thus the next build will see a false dependency since the source will continue to
be newer than the image. Modified building of base images to default to –no-cache; modified
building lab images to allow supressing use of cache, though still defaults to use of cache.

Dependence on LABTAINER DIR introduced with imodules, and will spread and backfill
from there. However, current installations have an invalid value for that env variable. An
updated update-labtainer.sh fixes that. But update must run twice for it to take effect within
the bashrc. After the first run of update-labtainer, the imodule function will be available, but
without the value being set. Add diagnostic to imodule to prompt for re-run of update-labtainer.
Or just hack around it?

Validation of goals.config should catch answer fields that lack syntax, e.g., foo rather than
answer=foo

11.7 UI

Notes on UI development.

21

11.8 UI Development

See the UI/README.txt file. Development uses Netbeans for UI construction. Manual
make/run is performed by UI/bin/buildUI2.sh. Netbeans is not required for non-UI code
changes.

11.8.1 Warn of changes

Detecting whether a user changed a configuration file, and thus should be prompted to save
it before losing it, is performed by saving the state into a file temporary directory and then
comparing that to newly saved state based on reconsuming the original file. This lets us avoid
false positives due to manual changes.

11.8.2 Distribution

The lab designer package is currently distributed by pulling the entire git repo tar ball. That
repo will include the jar file for the UI. This simplifies distribution. Should the tar grow large,
we can look at moving it into the release artifacts. The tar file is in UI/bin. It is run via the
editlab script.

11.9 Mounts for software persistance

Consider labs such as IDA. For licensing, we have the student perform the installation, which
involves accepting the license. It would be nice if subsequently performed IDA labs did not
require the student to repeat the installation. And with IDA, students may make configuration
changes. To facilitate this, we define one or more mounts for containers in the start.config file.
The installation package will be distributed within each IDA container, but will be deleted by
the fixlocal if it seems to have been installed?

11.10 Build dependence

The home tar and sys tar files as considered for build dependence. But the home.tar and sys.tar
are skipped because they are remade from a fresh pull. This is a problem when we add dated
archives. Must rebuild with a -f.

11.10.1 IModules

The DoRebuild function defines a container registry, which is then used to query info about
this image, but is also used to define the registry within the Dockerfile, where the base is
pulled, i.e.,the FROM statement. It seems there needs to be a BASE REGISTRY as well as a
REGISTRY, with the former defaulting to the default registry per LabtainerConfig.

How do we manage name conflicts between labs? That works natrually by precidence. But
between base images? Where a designer wants base images from multiple registries, how are
they named within the test registry since that collapses all registry designators into the one
test?

11.10.2 Base images IDs

The base image information placed in labels of lab container images include the registry name
for which the image was built. Since we push premaster registry images to DockerHub, the
public lab images have a label reflecting the premaster test registry. This is worked around
with in the InspectRemoteReg.py.

22

11.11 Other bread crumbs

If you get the dreaded ”docker.service: Start request repeated too quickly.”, then: sudo sys-
temctl daemon-reload sudo systemctl restart docker

11.12 tap/netmon Boot synchronization

Capturing network traffic using tap/netmon components may depend on those components
being up with their respective services prior to other components generating network traffic.
Typical Unix-based synchronization is not possible because the netmon component is not on
other networks. No communication paths between components and the tap/netmon compo-
nents are visible to the student, and thus mechanisms that reflect such communication are an
anachronism.

That implies use of a hidden synchronziation scheme. Or sleep based hacks. This syn-
chronization must(should?) occur on each start, not just the first parameterization. Once a
container starts, we cannot delay their services without adding something new to each. De-
lay start of other components until tap/netmon have started? Add new service similar to
wait param that will wait for tap/netmon to run? Automatically add to each component on a
tapped network?

Add volume to tap and use subdirectory as a lock. Sleep docker start threads for compo-
nents that attach to tapped networks? Advantage is designer need not configure individual
components.

11.13 IModule testing at NPS

Labs having defined registries do not have test registry images. The ParseStartConfig.py does
not insert a test registry for these labs, thus any running of IModules on test or development
systems will cause the Docker Hub instance of container images to run.

11.14 Gradelab via browser

The Flask web server is integrated with the grader container. The labtainer-instructor/flask/server.py
program implements the server along with the flask/templates files. For debugging, use the -vd
option instead of -w to cause the local repo flask directory to be mounted and used within the
container. When you get a terminal to the grader container, run the instructor.py command
and then start the server with .local/flask/server.py labname. The templates files
contain dynamic HTML for the various links displayed on each page, and these have correspond-
ing app.route decorators in the server.py code. Review the Flask product documentation to
understand the dynamic HTML syntax and how values are replaced.

11.15 Lab versions

Some labs have multiple versions, reflecting substantive changes, e.g., changes to assessment
artifacts, or introduction of new containers. This introduces naming issues, such as somelab
and somelab2. Lab listings will only show the latest version of a given lab, unless an earlier
version is already installed. While it may be tempting to hide version numbers from students
and instructors, doing so can introduce its own problems. For example, which xfer directory
should the labs show up in, and what if they have different grading?

23

	Introduction
	Linux host installation

	Development VM Installation
	Developer Software Prerequisites
	Getting Labtainers from Github
	Setting up the Development Environment
	Docker Installation

	Framework implementation overview
	Implementation elements
	Control flow
	mynotify

	Distribution publishing
	VM Appliances
	Installation sizes

	Source control and Configuration Management
	Build artifacts
	Build steps
	Base images
	Framework versions

	Releases and Container Images
	The premaster branch

	Development branches
	Test registries
	Testing
	Merging
	Publish new release
	Continuous integration with Jenkins
	Jenkins installation

	Developer guidelines
	Testing and Running Existing Labs

	GNS3 Support
	Dev Ops notes
	Test VMs

	Capturing stdin/stdout
	Headless Labtainers
	Gnome terminal issues

	Notes
	Race condition on precheck.sh output
	temporal logic considerations
	parameterizing the start.config
	Packaging
	Todo
	Docker problems
	Lab fixes
	Grader updates
	UI fixes

	ongoing
	UI
	UI Development
	Warn of changes
	Distribution

	Mounts for software persistance
	Build dependence
	IModules
	Base images IDs

	Other bread crumbs
	tap/netmon Boot synchronization
	IModule testing at NPS
	Gradelab via browser
	Lab versions

